
Optimization Theory and Algorithm II October 9, 2022

Lecture 8
Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

1 Stochastic Gradient Descent

1.1 Motivation of SGD

Suppose that we have a dataset {ai, bi}mi=1,ai ∈ A ⊆ Rn, bi ∈ B ⊆ R. A supervised learning process is to
find a function to present the relationship between A and B, that is h : A → B.

• If B = {−1, 1}, then it is called “binary classification problem”.

• If B = R, then it is called “regression problem”.

To estimate h, generally adopting the so-called expected risk minimization method:

min
h∈F

Eρ[ℓ(b, h(a))], (1)

where F is a function space (also called Hypothesis Space), ℓ is a loss function and (a, b) is generated from
an unknown distribution ρ.

Example 1 For a classification problem, a natural loss funtion is 0− 1 loss,

ℓ01(b, h(a)) =

{
0, b = h(a),

1, b ̸= h(a).
(2)

Then, we can derive that

min
h∈F

E[ℓ01(b, h(a))|a] = min
h∈F

{1 · P(b ̸= h(a|a) + 0 · P(b = h(a)|a)}

= min
h∈F

{P(b ̸= h(a)|a}

= min
h∈F

E[1(h(a) ̸= b)|a].

Let us consider a more general case, define g : A → R, then we use

h(a) = (g(a)) =

1, g(a) > 0,

0, g(a) = 0,

−1, g(a) < 0.

(3)

Thus,

ℓ01(b, h(a)) =

{
0, b = h(a),

1, b ̸= h(a),
= ℓ01(b, g(a)) =

{
0, bg(a) > 0,

1, bg(a) ≤ 0.
(4)

The quantity bg(a) is called “margin” in the supervised learning.

1

Because that the distribution ρ is unknown, the expected risk minimization (1) cannot be directly computed.
The following empirical risk minimization (ERM for short) approach is used to replace the expected risk
minimization as

min
h∈F

1

m

m∑
i=1

ℓ(bi, h(ai)). (5)

Obviously, the loss function (2) is discontinuous and non-convex. So, we cannot directly use the convex
optimization trick to handle the problem (5) with the 0-1 loss. The so-called convex surrogate function
is adopted to overcome this hurdle (see Figure 1).

Consider the margin u = bg(a), then general loss on the margin has the property: ℓ(u) → 0 as u → +∞ and
ℓ(u) increasing as u → −∞. Thus, we list the commonly used surrogate function as follows:

• Logistic loss: ℓ(u) = log(1 + exp(−u)) for the logistic regression.

• Hinge loss: ℓ(u) = (1− u)+ = max(1− u, 0) for the SVM.

• Exponential loss: ℓ(u) = exp(−u) for the AdaBoost.

• Square loss: ℓ(u) = (1− u)2/2 for the least squares SVM.

Figure 1: Classical convex surrogates for binary classification with the 0-1 loss.

Example 2 (Logistic Regression Again) Consider P(b = 1|a) = p and P(b = −1|a) = 1 − p, then suppose
that

P(b = 1|a) = exp(a⊤x)

1 + exp(a⊤x)
,

and
P(b = −1|a) = 1

1 + exp(a⊤x)
.

Thus,
P(b|a) = 1

1 + exp(−ba⊤x)
. (6)

2

Log-likelihood is ∑
i

ℓ(bi,ai) = −
∑
i

log(1 + exp(−bia
⊤
i x)).

MLE is equivalent to

min
x

1

m

∑
i

log(1 + exp(−bia
⊤
i x))︸ ︷︷ ︸

logistic loss

.

Example 3 (Regression) Let us consider the following regression cases

• Suppose that F = {h|h(a) = a⊤x} and ℓ(b, h(a)) = 1
2 (b− h(a))2, then ERM is equivalent to

min
x

1

2m

∑
i

(bi − h(ai))
2 =

1

2m
∥Ax− b∥2.

• Ridge Regression:

min
x

1

m

∑
i

(bi − h(ai))
2 + λ∥x∥2 =

1

m

∑
i

{(bi − h(ai))
2 + λ∥x∥2}.

• Nonlinear case:
min
x

1

m

∑
i

(bi − hx(ai))
2,

where hx is a nonlinear function, e.g., deep nets.

Definition 1 Define that finite-sum optimization problem as

min
x

f(x) =
1

m

m∑
i

fi(x), (7)

where fi : Rn → R.

Let {(ai, bi)}mi=1 be a dataset, F = {hx|hx : A → B,x ∈ Rn} be a class of predictor function and ℓ be a loss
function. Then we can find that the corresponding ERM framework is a finite-sum optimization, that is

min
x

f(x) =
1

m

m∑
i

fi(x) =
1

m

m∑
i

ℓ(bi, hx(ai)). (8)

One key property of the formulation (7) is that every term in the finite sum optimization only involves one
sample from the dataset.

If we use the gradient descent algorithm to solve it:

xt+1 = xt − st
m

∑
i

∇fi(x
t) = xt − st

m

∑
i

∇xℓ(bi, hxt(ai)).

From this update, we see that one iteration of gradient descent requires to go over the entire dataset in order
to compute the gradient vector. In a big data setting where the number of samples m is very huge, this cost
can be prohibitive.

3

Algorithm 1 Stochastic Gradient Descent

1: Input: Given an initial starting point x0 ∈ Rn, and t = 0
2: for t = 0, 1, . . . , T − 1 do
3: Compute a stepsize or learning rate st > 0.
4: Draw a random index it ∈ {1, . . . ,m}.
5: xt+1 = xt − st∇fit(x

t) and t := t+ 1.
6: end for
7: Output: xT .

1.2 SGD

The core idea of SGD is assuming each component function fi is differential, the method picks an index it
randomly and takes a step in the direction of the negative gradient of the component function fit . Then we
have the unbiased estimation of the gradient of ERM problem:

E[∇fit(x)] =

m∑
i=1

P(it = i)∇fi(x) =
1

m

∑
i

∇fi(x).

The key motivation for this process is the using a signal data point at a time results in updates that are
m times cheaper than a full gradient step. Note that using a signal component does not necessarily lead to
convergence, even cannot guarantee the decreasing of objective function.

Example 4
min
x

f1(x) + f2(x),

where f1(x) = 2x2 and f2(x) = −x2. If xt > 0, and it = 2, then the SGD update will necessarily lead to an
increase in the objective function value.

Batch SGD:
xt+1 = xt − st

|Dt|
∑
it∈Dt

∇fit(x
t),

where Dt is a subset of {1, 2, . . . ,m} called “Batch”. If |Dt| = m, it is GD. If |Dt| = 1, it is SGD. If
|Dt| << m, it is the mini-batch stochastic gradient descent algorithm.

1.2.1 Convergence

Assumption 1 (A1) Objective function f is β-smooth,

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

Assumption 2 (A2)

(1) The index it does not depended from the previous i0, i1, . . . , it−1.

(2) Eit [∇fit(x
t)] = ∇f(xt) (Unbiased Estimation).

(3) Eit [∥∇fit(x
t)∥2] ≤ σ2 + ∥∇f(xt)∥2 (control the variance).

Assumption 3 (A3) The objective function f is α-strong convex

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ α

2
∥x− y∥2.

4

Lemma 1 Under A1, consider the SGD, then

Eit [f(x
t+1)] := E[f(xt+1)|xt]

≤ f(xt)− st⟨∇f(xt),Eit [∇fit(x
t)]⟩+ βs2t

2
Eit [∥∇fit(x

t)∥2].

Proof 1 We know that

f(xt+1) ≤ f(xt) + ⟨∇f(xt),xt+1 − xt]⟩+ β

2
∥xt+1 − xt∥2

= f(xt)− st⟨∇f(xt),∇fit(x
t)⟩+ βs2t

2
∥∇fit(x

t)∥2.

Taking the expectation of the above inequality leads to the results.

Lemma 2 Based on A1 and A2, it has

Eit [f(x
t+1)− f(xt)] ≤ βs2t

2
σ2 − st(1−

βst
2

)∥∇f(xt)∥2.

Proof 2 According Lemma 1, A1 and A2,

Eit [f(x
t+1)− f(xt)] ≤ βs2t

2
Eit [∥∇fit(x

t)∥2]− st⟨∇f(xt),Eit [∇fit(x
t)]⟩

≤ βs2t
2

(σ2 + ∥∇f(xt)∥2)− st∥∇f(xt)∥2

=
βs2t
2

σ2 − st(1−
βst
2

)∥∇f(xt)∥2.

Lemma 3 Suppose A3 holds, then
f(x)− f∗ ≤ 1

2α
∥∇f(x)∥2.

Non-convex and β-smooth objective functions:

SGD is a commonly accepted method for training neural networks, which are usually non-convex and smooth
optimization problems. For GD, we have known that

min
0≤t≤T−1

∥∇f(xt)∥ = O(
1√
T
).

What about SGD?

Theorem 1 (Fixed Learning Rate)

Suppose that A1 and A2 hold. Let st = s ∈ (0, 1/β], then

E[1/T
T−1∑
t=0

∥∇f(xt)∥2] ≤ sβσ2 +
2(f(x0)− f∗)

Ts
.

References

5

	Stochastic Gradient Descent
	Motivation of SGD
	SGD
	Convergence

